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NOTATION

A Area

as Axisymmetric displacement thickness, Equation [12]

C Constant in Mangler's transformations, Equation (421

CD Drag coefficient, D/lp U2

D Total drag

D1  Skin-friction drag

D Pressure drag

e Subscript for quantities at tail of body

9 Subscript for quantities at point where 8 << r. no longer holds

H Two-dimensional shape parameter, b'*/0

A Axisymmetric shape parameter, A*/fl

j Exponent in Equation (761, (1 + m) (H + 2)

L Length of body

I Axial distance along body of revolution

m Exponent of power law for local coefficient of skin friction,
Equation [74]

N Subscript for quantities at neutral stability point

n Exponent of power law for velocity profiles, Equation [851

p Pressure in boundary layer

Pressure of undisturbed incoming stream

q Exponent in Equation (921

Velocity of fluid in 0-direction

Turbulent fluctuation in go

RL  Body Reynolds number, L U.v/

Re Boundary-layer Reynolds number, U/aV

r Transverse radius from axis of body

feW  Transverse radius to surface of body of revolution

r* Radius to equivalent body with added displacement thickness

9 Subscript for quantities at transition

9b Subscript for quantities at transition point induced by free.
stream turbulence
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is Subscript for quantities at self-excited transition point

V Velocity at outer edge of boundary layer

V" Velocity of undisturbed incomiqlg stream

W Velocity of fluid parallel to surface of body in a-direction
(mean velocity for turbulent flows)

U Turbulent fluctuation in v

V Velocity of fluid normal to surface of body (mean velocity
for turbulent flows)

VP Turbulent fluctuation in

z Arc length along meridian profile

y Distance normal to body surface

a Angle between tangent to surface and axis of body

8 Thickness of boundary layer

8" Two-dimensional displacement thickness

Co Constant in power law for local coefficient of skin friction
in Equation [741

e Two-dimensional momentum thicknessf • 1-u) dy

A*Displacement area, f V(i rdy
f800

Viscosity of fluid

v Kinematic viscosity of fluid

p Density of fluid

Normal-stress term, pU 2-

Shearing stress, #h- pU'',
ay

7W Shearing stress at body surface

*Angle between a meridian plane and the reference meridian plane

Momentum area, fJ(1 - U) Xrd

n} Momentum area of wake at infinity downstream

0 Subscript for quantities at zero pressure gradient on flat plates

Tilde over equivalent two-dimensional quantities



ABSTRACT

A procedure is presented for calculating the viscous drag ot bodies of
revolution in axial motion from boundary-layer theory. Rapid approximate

methods are developed for computing the growth of the laminar and turbulent
boundary layers. A new empirical criterion is given for locating the position of

self-excited transition associated with low-turbulence flows.

INTRODUCTION

A completely immersed body moving rectilinearly with uniform velocity in an infinite

fluid at rest experiences a resisting force which may be termed viscous drag as it results pri-

marily from the viscous properties of the fluid. In designing low-drag bodies there often a-

rises the need for calculating the viscous drag of streamlined bodies of revolution in axial

motion when considering various proposed shapes. For bodies moving at high Reynolds num-

bers, which are of great technical importance, the viscous drag of streamlined bodies of revo-

lution is readily amenable to analytical treatment on the basis of the boundary-layer concept.

Historically, the theoretical analysis of the drag of bodies in uniform motion by as-

suming an ideal (non-viscous) fluid gave the fruitless result of zero drag for all bodies, the

classical D'Alembert paradox. At the other extreme, the theoretical analysis of drag by apply-
ing the complete set of Navier-Stokes equations of motion for the flow of a viscous fluid led,

in general, to mathematical difficulties which were virtually unresolvable owing to the com-

plicated non-linear nature of these equations. For bodies moving at high Reynolds numbers,

however, the flow is virtually that of an ideal fluid except in a thin boundary layer next to the

body where substantial viscous forces are produced by the rapid drop in velocity to zero at the

body surface. Accordingly, by considering the viscous flow confined to the boundary layer,

Prandtl was able to derive the simpler boundary-layer equations of motion from the Navier-

Stokes equations.
The principal purpose of this report is to describe methods of solving the boundary-

layer equations of motion to arrive at the viscous drag of bodies of revolution of arbitrary

shape in uniform axial motion. The study is restricted to hydraulically or aerodynamically

smooth streamlined bodies in incompressible flow. A streamlined body may be defined as one

without appreciable separation of flow from its surface and consequently with small pressure

drag resulting from the generation of separation eddies. It is to be noted, however, that some

pressure drag is still present in the viscous drag of even perfectly streamlined shapes owing

to the effect of the boundary layer in displacing the main flow outward, especially near the

tail.
The calculation of the viscous drag of a body of revolution requires a detailed analysis

of the development of each phase of the boundary layer from its origin on the nose of the body

to its final phase as the frictional wake far downstream. In the downstream direction the
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boundary layer may consist successively of. a laminar boundary layer, a transition zone from

laminar to turbulent flow, a turbulent boundary layer,and a frictional wake.

In the laminar boundary layer an approximate method involving a simple quadature is

derived for the rapid calculation of the changes in momentum. The derivation consists of an

extension to axisymmetric flows past bodies of revolution of a method of successive approx-
imation introduced by Shvets I for two-dimensional laminar boundary layers.

New empirical criteria are presented for locating the position of transition for either

low-turbulence or turbulent free-streams from the position of neutral stability. The position

of so-called self-excited transition occurring in low-turbulence streams or under flight con-
ditions is based on the average pressure gradient from the position of neutral stability to that

of transition. Although the test data are for two-dimensional flows, the criterion is extended

to axisymmetric flows past bodies of revolution by means of Mangler's transformations. An

approximate criterion for estimating the position of transition on a body in a turbulent free-

stream is established on the basis of measured positions of transition for flat plates in free

streams with various degrees of turbulence.

The analysis of the axisymmetric turbulent boundary layer on a body of revolution is

divided into that for the main portion of the body, where the boundary layer is relatively thin

compared to the radius of the body, and that for the tail portion, where the boundary layer is

relatively thick. The momentum changes in the thin boundary layer may be calculated by a

rapid method involving a simple quadrature wherein a power-law relation for the skin friction

of flat plates is incorporated. Flat-plate values for skin friction are deemed reliable even

where the local skin friction is diminishing in an adverse pressure gradient owing to the com-

pensating effect of the Reynolds normal-stress term. The turbulent boundary layer on the tail

is analyzed by means of appropriate linear simplifications which give a rapid method for cal-

culating the momentum changes. An expression is derived for the change in momentum pro-

duced by the pressure difference in the wake at the tail and in the wake far downstream in ac-

cordance with a method presented by Young 2 wherein, however, a more general relationship is

employed for the variation of the shape parameter of the velocity profile.

For quick reference the various steps involved in calculating the development of the

boundary layer on a body of revolution are summarized at the end of this report.

GENERAL CONSIDERATIONS

AXISYMMETRIC BOUNDARY-LAYER FLOW

The main elements comprising axisymmetric flow past a body of revolution at high

Reynolds numbers are shown in Figure 1 for the meridian plane. Two principal regions of

flow are indicated: the boundary layer next to the body with viscous flow and the region

IReferences are listed on page 29.
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external to the boundary layer with essentially potential (non-viscous) flow. The pressure dis-

tribution along the body is mainly determined by the potential flow with only a slight modifi-

cation arising from the boundary-layer flow except right at the tail where the after stagnation

pressure of potential flows is absent. The pressure distribution on the body is important in

determining the boundary-layer flow inasmuch as it is one of the most important factors gov-

erning the growth and development of the boundary layer. A negative pressure gradient is

termed favorable and a positive pressure gradient adverse in connection with preventing sepa-

ration of the boundary-layer flow from the body surface.

Starting as laminar flow at the stagnation point on the nose, the boundary-layer flow de-

velops instability and undergoes transition to turbulent flow at some position downstream on

the body. The boundary-layer flow usually continues turbulent for the remaining after portion

of the body and leaves the tail as the frictional wake which extends indefinitely downstream.

VISCOUS DRAG

The viscous drag of a body is generally derivable from the boundary-layer flow either

on the basis of the local forces acting on the surface of the body or on the basis of the ve-

locity profile of the wake far hownstream. The local hydrodynamic force on a unit of surface

area is resolvable into a surface shearing stress or local skin friction r. tangent to the body

surface and a pressure p normal to the surface. The summation over the whole body surface

of the axial components of the local skin friction and of the pressure gives, respectively, the

skin-friction drag D1 and the pressure drag Dp which for a body of revolution in axisymnmetric

flow become

D1  2sf rw ' coseds El]

0

Polent l
Trosition

Stognotion 
--'---

uNn e# I O A -o, TouugGrdI
Point U*O

Figure 1- Typical Boundary Layer Around a Body of Revolution in a Meridin Plae
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whet PW is the radius from the axis to the body surface,

a is the angle between the tangent to the meridian profile and the axis of the body,

* is the arc length along the meridian profile, and

me is the total arc length of the body from nose to tail.

The sum of the two drags then constitutes the total viscous drag D or

D-Df + D [31

The alternate procedure involving the velocity profile of the wake, which is bettor

suited to the methods of this report, is to determine the total drag, without need of resolution

into skin-friction and pressure drag, by considering the net rate of lose of momentum of the

flow of the entire stream. The analytical procedure is to apply the momentum theorem of

hydrodynamics to a control surface enclosing a region about the body with dimensions suf-

ficiently large to have substantially undisturbed free-stream pressure g. at its periphery. The

total drag of the body which is the net rate of loss of momentum in the axial direction is then

given by

D - ,,p J u,(U. - u),dr [41
0

where U.. is the velocity of the incoming undisturbed stream ahead of the body,

u is the velocity in the wake far downstream,

r is the radial distance from the axis, and

p is the mass density of the fluid.

In terms of the momentum area of the wake far downstream

* W! IJ .(1Lt)rdr (5]

0
the drag is

D-2wp Q a. [6]

The drag coefficient CD based on some appropriate reference area A is

CDU D 4-~ [71

.pU2 A A

Inasmuch as the momentum area of the wake 0. is the final stage of the development

of the boundary-layer flow from its inception on the nose of the body, it is necessary to cal-
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culate the momentum ares of the boundary-layer flow for each of its stages in order to deter-
mine the resulting drag of the body.

PRESSURE DISTRIBUTION ALONG THE BODY

Before any boundary-layer calculations can be performed for the body of revolution
whose drag is to be determined, it is necessary to have on hand the distribution of pressure p
along the body, which in non-dimensional terms is usually presented as

P -L l4., - [8]
p .,

Here p. is the pressure of the undisturbed stream far ahead, and U is the velocity at the outer
edge of the boundary layer.

Where no experimental values of pressure distribution are available, recourse can be
had to methods for calculating the potential flow past the body which involve the solution of
the Laplace equation for arbitrary boundary conditions. Such methods, which are reviewed

briefly and evaluated in Reference 3, are, in general, numerically arduous and difficult to
apply to bodies of arbitrary shape. Recently, Landweber 3 developed an accurate method, well
suited to automatic calculating machines, in which a special iteration formula is employed in
solving the resulting Fredholm integral equation of the first kind. A faster method, giving,
however, only approximate results, is that of Young and Owen4 which involves interpolation
among tabulated values of Legendre polynomials.

For the original profile of the body of revolution the calculated pressure distribution
for potential flow agrees closely with measured values over most of the length of the body,
the greatest discrepancy appearing near the tail because of the displacement effect of the
boundary layer. A closer result can be obtained, however, by repeating the potential-flow cal-
culation for a somewhat altered body consisting of the original contour and an added thickness
based on the displacement effect of the boundary layer. The added displacement thickness in

the y.-direction normal to the surface for a body of revolution in axisymmetric flow, as shown
in Figure 2, is obtained by equating the total flow retarded in the boundary layer of thickness
8 to tile amount subtracted from the potential flow of thickness a* or

a* a5

f 2o(U-O)-dy f 2i(U-u)rdy [9]

0 0

or

o f (1)rdV-A 
[101

0 0
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Meridian Plans

Figure 2 -Equivalent Body of Revolution with Displacement Thickness

where A* is the displacement area. Substituting

r -rw,+ Ycoo a [11]

in Equation [10] gives

a [121

con a

Over the forward part of the body where 8 << r. a 41reduces to

a f (1 - dy [131

0

which is the displacement thickness for two-dimensional flow. In the wake where r.- 0,

Equation [12] reduces t~o

a*- V2 A*[141
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It is convenient to define a radius r* to the surface of the equivalent body, shown in

Figure 2,

r rw + a cooa (151

Then from [121

r" W2 + 2A'coco [161

AXISYMMETRIC LAMINAR BOUNDARY LAYER

The solution of I-,.inar boundary layers in either two-dimensional or axisymmetric

flows has been the subject of numerous mathematical investigations owing to the interesting

characteristics of the resulting equauons of motion. The considerable literature that has

developed contains methods of various degrees of complexity and precision which are given in

the summaries by Goldstein s and more recently in the AVA Monographs 6 and by Schlichting. 7

For many drag calculations very precise solutions of the boundary layer, enquiring extensive

numerical work, are usually not warranted, especially where the laminar boundary layer con-

stitutes a small part of the whole boundary layer. A simple approximate formula, well adapted

to drag calculations, will be devised by an extension to axisymmetric flow of a method of suc-

cessive approximation introduced by Shvets for two-dimensional flows.

Owing to the thinness of the laminar boundary layer on the forward part of the body,

8 << r , the equations of motion for steady axisymmetric boundary-layer flow past a body of

revolution with negligible longitudinal curvature (Reference 5) reduce to

U u .- + ,,a.V _ + Va._u
C ay P CIS a12

[171

ay

and the equation of contini ty reduces to

. V+ _. + - drw [181
as ay ?W  dr

Here u and v are the z- and y-componenta of the boundary-layer velocity respectively parallel

and normal to the surface of the body in the meridian plane, p is the pressure in the boundary

layer, v is the kinematic viscosity of the fluid, and 8 is the thickness of the boundary layer

in the y-direction. These equations have been shown$ to remain applicable at the forward

stagnation point for bodies with blunt noses even thdugh both 8, ,r. . 0. The following

boundary conditions are to be satisfied by the boundary-layer equations:



u-0 at y=0

U-V at y-8 19]

The presaure p and the velocity U at the outer edge of the boundary layer are related by

Bernouilli's equation for potential flow

+Ip U2 _ constant [201

or
1[21]

Combining the equation of motion, [171, the continuity equation, [18], and the differential

Bernouilli equation, [21], produces

7

a 2 V3 ,~ ;W de

A first approximation is to let

Ca 2 U 0 [23]
dY 

2

Integrating [231 twice and utilizing boundary conditions, (19], results in a linear velocity

profile

1L [241
U a

A second approximation is obtained by substituting the linear velocity profile, [24]

into differential equation [22]. Integrating twice and utilizing boundary conditions, (19], as

before gives

r(A _-12 +~ 11
U 24 do [ Is-)(251

Applying the additional boundary condition that

dv 0 aty= [26

to the differentiated form of Equation [25] yields

+2 1 2

do U do Vs - .(7
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For a linear velocity profile, [24),

626

whore 0 is the two-dimensional momentum thicknes

8

Substituting 0 in (27] gives

Integrating the linear differential equation, (30], produces

(P. e) 2.L _zwu 2 tj 5 d [31]
fS

with the stagnation point a - 0 as the initial point of integration. An interesting feature of
this result is its being identical in both form and numerical constants to the semi-empirical

result of Thwaites*9 when his two-dimensional solution is extended to the axiaymmetric
case. 1 0 Thwaite averaged known solutions of two-dimensional laminar boundary layers for
a variety of press*ure gradients.

Now the momentum area 0 for axisymmetric boundary-layer flow in general may be de-
fined as

anu I (-.!)Pdy [321

Since
-r,+y coma [11]

with

0 <Sos a

then in general

rtwe < al < ( W + 8 ) 0 [341

Hence for 8 << P. which is the cue under consideration

( -'w * [35]
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A non-dimensional form of the momentum equation, [81], convenient for calculation

purposes is

(LL-2- RL ( )6 0 , VL07

where I is the axial distance from the nose,

di - coo adz [371

L is the length of the body and RL is the body Reynolds number given by

- U. [38

Transition to turbulent flow is assumed to occur instantaneously at a transition point

(1/L), which then becomes the upper limit of integration in Equation E86] when the integration

is performed for the complete laminar boundary layer.

TRANSITION

As the boundary layer thickens downstream on the body, the laminar flow tends to be-

come unstable and undergo transition to turbulent flow under the stimulus of disturbances in

the flow. The transition zone may be considered to extend from the point where the charac-

teristic shape of the mean-velocity profile of the laminar boundary layer begins to change to

the point where the characteristic shape of the mean-velocity profile of the turbulent boundary

layer first appears. For most drag calculations the zone of transition is short enough to be

sdequately represented by a transition point. The position of transition depends largely upon

the interaction of the boundary-layer flow with random disturbances in the flow. Significant

parameters of the boundary-layer flow affecting the position of transition are the boundary-

layer Reynolds number representing the ratio of inertial forces to viscous forces, the pres-

sure gradient in the downstream direction, and the curvature of the surface. The source of

random disturbances may be the turbulence in the free stream, the roughness of the surface

or noise being transmitted through the fluid.

As shown theoretically by Tollmien U and Schlichting? among others (see summary in

Reference 12) and verified experimentally by Schubsuer and Skramstad3s and Liepmann,'14 the

laminar boundary layer exhibits stability characteristics which are governed largely by the

boundary-layer Reynolds number and by the pressure gradient. Random disturbances of van-

ishingly small amplitude have certain frequencies amplified and other frequencies damped by

the laminar flow in the boundary layer. The amplified fluctuations combine into regular waves

termed Tollmien-Schlichting waves which increase in amplitude downstream at a rate deter-

mined by the Reynolds number and the pressure gradient of the boundary layer. Intermittent
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bursts of high-kequency fluctuations which are associated with intermittent separations of the
laminar flow herald the arrival of the more random fluotuatioms characteristic of fully devel-

oped turbulent flow. The transition just described, which depends on the amplification of van-
ishingly small disturbances, may be termed self-excited transition.

Disturbances of greater amplitude arising from fre-strem turbulence or rough surfaces
tend to hasten the decomposition of the laminar boundary layer into a turbulent boundary layer.

Taylor' s has developed the concept of momentary separations arising from momentary adverse

pessure gradients as the mechanism instigating turbulent motion. In accordance with Taylors

analysis both the scale and intensity of the free-stream turbulence have been shown experi-

mentally * to have a marked bearing on the position of transition.

The studies of Liepmann 14 .17 on the stability of laminar boundary layers on curved

surfaces have shown the Tollmien-Schlichting type of stability to exist on surfaces convex to
the flow and the (&tler type of stability involving vortices to exist on concave surfaces. Con-

vex surfaces have a greater stabilizing effect and concave surfaces a lesser stabilizing effect
than flat surfaces.

The presence both of large boundary-layer Reynolds numbers and of adverse pressure
gradients tends to promote transition by increasing the instability of the laminar boundary

layer and by accelerating the amplification of the Tollmien-Schlichting waves.

Under special circumstances transition is hastened when the laminar boundary layer
separates from the body and reattaches itself as a turbulent boundary layer. Such separation
may be caused by sharp adverse pressure gradientSeon bodies at large angles of attack or by

sharp adverse pressure gradients induced by large single roughnesses obstructing the flow. 9

Quantitative criteria for establishing the transition points on smooth bodies of revolu-

tion will be considered here for two technically important flow situations which are character.

ized by the absence or presence of significant amounts of turbulence in the main flow stream.

Zero or low-turbulence condition exists in specially constructed low-turbulence wind tunnels
while a condition of various degrees of turbulence is present in most wind tunnels and flow

facilities. The flight of aircraft is considered a case of low turbulence on the basis of tests

by Jones2 0 who concluded that the scale of turbulence in the atmosphere is such as to have

no effect on transition. A &'milar low-turbulence condition may be assumed in the case of

bodies moving in the depths of the oceans whore currents are absent.

Transition in the low-turbulence cse may be considered to be of the Tollmien-

Schlichting type wherein vanishingly small disturbances are amplified in the boundary layer

to the castastrophic point of resulting turbulence within the boundary layer. The stability

analysis of laminar boundary layers shows the existence of a point of neutral stability where.

in the immediate neighborhood upstream disturbances of all frequencies are damped out.

Mangler 21 has prepared a chart, partly reproduced in Figure 3, which specifies the neutral

stability point in terms of the critical value RO.N of boundary-layer Reynolds number Re

where
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Figure 8- Neutral Stability Point a Functio of Pressure dradient (Mangler, Ref. 21)

-e AlL [391

asafunction of a pressure-.rdient parameter .The curve shown, which is based on

the stability characteristics of Pohihausen-type velocity profiles as calculated by Schlichting

and Ulrich22 is applicable to both two.dimnsional and axisyntuetric boundary layers.

Unfortunately no theoretical analysis has been developed for locating the point of self.

excited transition from the amplification of the Tollmien-Schlichting waves past the point of
neutral stability. Experimental evidence t I ndicates a pronounced effect by favorable pressure
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gradients in damping and adverse pressure gradients in amplifying the Tollmien-Schlichting

waves.

A rough empirical criterion for locating the point of self-excited transitions is ascribed

to WalZ23 who suggests a critical value of the Reynolds number of transition/t0, s as thrice

that for neutral stability or

NO,. i 3 RO. n  [401

There follows, however, a new empirical criterion which is based on more rational
grounds and which attempts to incorporate the effect of pressure gradients in determining the

position of self-excited transition. Since the transition point depends on the cumulative ef-

fect of the pressure gradients from neutral stability to transition, it would seem appropriate

to use as a first approximation the average pressure gradient for one of the significant parame-

ters. Accordingly two-dimensional data on transition points from tests on wing sections in

flight20. 24 and in low-turbulence wind tunnels1 3 , 25' 26 were analyzed on this basis. As shown

in Figure 4 the difference in Reynolds numbers from the point of neutral stability to transition

R.s - r,N is plotted against the average pressure gradient parameter E._ over the

same region where

O- dre-

d f (411
i' df

The tildes over the synbols refer to two-dimensional flows. Examination of the plotted data

in Figure 4 indicates a reasonably consistent variation between the two parameters involved.

The conversion of the proceeding two-dimensional data for use in axisymmetric flows

past bodies of revolution may be accomplished by means of Mangler's relations7 21 for trans-

forming the equation of n ,, 'n of two-dimensional boundary layers to those of equivalent axi-

symmetric boundary layers on bodies of revolution. Mangler's transformation relations are

d9 - C 2 -r 2

/2

C rw
[ ]

L [421

C 9.

L a
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wher the tildes over the quantities refer to equivalent two-dimensional conditions and C is

an arbitrary constant.

A simple expression will now be derived for "! which can be used to analyze two-
-' IU

dimensional data and which can be extended into an equivalent axisymmetric system. First

the following two-dimensional momentum equation is obtained from the axisymmetric momentum

equation, [801, by utilizing Mangler's relations [421

1&2 d17 ;2[431
Since in general

d d ((42 [441

, d9

then from [481

d1 d(V 2) [45]
dff 45 5v P a

Averaging - over the distance from neutral stability to transition in accordance with
V ,

[41] gives simply

v i 45 3
In order to use the two-dimensional data of Figure 4 to determine the self-excited tran.

sition point for axisymmetric flow, it is necessary to express 2 4 - in terms of an equiva-
edr

lent axisymmetric system. Applying Mangler's transformations to [451 and integrating in ac-

cordance with [41) gives 2 dS in equivalent axisymmetric quantities as

didx
[471S d ! 45 v dcs

LN 2 dj

Furthermore, in order to use the two-dimensional data of Figure 4 to determine the self-

excited transition points for axisymmetric flows, it is necessary to convert the Reynolds
number for self-excited transition in two-dimensional flows ir.,, to that for axisymmetric

flows on bodies of revolution ft,t,. Now Mangler's transformations [421 give for all Reynolds

numbers of laminar flows
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C- fr [481

Owing to the presence of the arbitrary constant C, it is obvious that Mangler's transformations

are not sufficient to determine the critical values of the Reynolds numbers for transition.

Hence, other considerations must apply. In the analysis of the stability of laminar flows on
bodies of revolution, it was found 6, 21 that the resulting linearised equation of the disturbed

flow at the limiting condition of large Reynolds numbers was the same as that for two.,
dimensional flows. Hence

R .N a Re. N (491

and as stated previously, the neutral stability chart of Figure 8 is applicable to both two-

dimensional and axisymmetric flows on bodies of revolution. As a first approximation a

similar condition will be assumed to hold for self-excited transition. Then

Re. is w Re, is [501

As a check on the essential validity of the preceding, the self-excited transition points

were computed for Lyon's 27 bodies of revolution on the basis of Figure 4. Owing to the non-

existance of low-turbulence wind tunnels at the time of Miss Lyon's tests, the condition of

least degree of turbulence represented in her tests was that when the turbulence-producing

screens were not inserted in the wind tunnel. Comparison is then made in Table 1 of the axial

locations 11L of the computed neutral stability points and self-excited transition points with

the test data for the no-screen condition.

TABLE 1

Axial Locations I/L of Transition Data for Lyon's Bodies of Revolution 2 7

Model A Model B
Subject RL - 2.09 x 106 RL - 2.075 x W6

Computed Neutral Stability Point 0.20 0.13

Compvted Self-Excited Transition Point 0.56 0.7

Measured Transition Region 0.50-0.70 0.30- 0.35
-(without screen)

0-0.13,Roegions of Favorable Pressure Gradient 0 - 0.30 0.0- 0.61

___ ___ ___ ___ ___ ___ ___ ___ _ _ ___ ___ ___ ___0.40 -0.61 _

0. 13 - 0.40
Regions of Adverse Prer Gradient 0.30.1 0.61 -1
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The measured transition points should be behind the neutral stabi!ity points and

forward of the self-excited transition points owing to the small amount of natural turbulence
in the wind tunnel. Examination of Table 1 confirms this. The reason for the large difference

between the measured transition point and the self-excited transition point on Model B is due

to the favorable pressure gradient, 0.40 < /L < 0.61, which tends to delay the development

of self-excited transition.
In order to obtain the neutral stability and transition points, it is more convenient to

use nondimensional relations. From [36] there results

RO 2  4 j I/L -L " eca[1
U.1

It also follows that

02dU _ 1 d(Us) (52]
P' dz RL( d(A)Coa

Thus, from (471 r,[)R02-2 - -M)%NJ. L /
45 J)*~ t)2sec a d L.)

The neutral stability point or self-excited transition point is determined graphically by the

intersection of a curve representing the appropriate parameters of the given boundary layer
with the curves of Figure 3 or 4, as the case may be.

The position of transition on a body in a wind tunnel or other flow facility depends,

to a great extent, upon the scale and intensity of the turbulence in the free stream. To

simplify the analysis the representative measure of turbulence in the stream will be taken as

the ratio of the root mean square of the velocity fluctuations in the z-direction to the mean

velocity of the free stream or uV /uV.. Data for flat plates without pressure gradient from

tests in wind tunnels 13.28,29 are ploued in Figure 5, the ordinates being the difference in

the boundary-layer Reynolds numbers for transition and that for neutral stability HO,8b - RO,N

and the abscissae being the percentage of turbulence tru7/U. in the free stream. It is to

be noted that for flat plates the neutral stability point seems to be the limiting position of

transition for streams of increasing turbulence while the self-excited transition point is the

limiting position of transition for streams of decreasing turbulence.
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turbulence. If the curve for transition for any boundary layer with a pressure gradient is as-

sumed geometrically similar to that for a flat plate as plotted in Figure 5, the Reynolds

number for transition Ro tb for boundary layers on bodies in a stream with turbulence may be

stated as

Re.b - RON . ( R , b - RON [541

Re. g. - Re. N Re.-;, - Re N 0

where the subscript 0 refers to flat-plate values without pressure gradient. For more precise

results, it is best to depend upon measured locations of the position of transition to obtain

values of the Reynolds numbers for transition characteristic of the particular wind tunnel or

flow facility being utilized.

AXISYMMETRIC TURBULENT BOUNDARY LAYER

GENERAL

Owing to the incomplete state of present knowledge, concerning the mechanics of

turbulent flow processes, the analysis of turbulent boundary layers lacks the clearly defined

features of laminar boundary layers. In order to arrive at results of immediate utility, exten-

sive reliance has to be placed on empirical data to augment theoretically derived relations.

Turbulent flows, in general, may be treated from the Reynolds viewpoint, this consid-

ers turbulent flow to consist of a mean flow upon which a fluctuation flow of much smaller

magnitude is superimposed. After the combined mean and fluctuation quantities are substi-

tuted into the Navier-Stokes equations of motion for viscous flow, appropriate time averages

of the resulting flow lead to the Reynolds equations of motion containing separate terms for

the mean quantities and the fluctuation quantities. The form of the Reynolds equations is

similar to the Navier-Stokes equations with the significant exception of the presence of addi-

tional terms which consist of averages of various products of the fluctuation velocities.

These additional terms may be shown to act as apparent stresses (Reynolds stresses) within

the flow. It is, however, L.u present lack of analytical relations for the Reynolds stresses

which has made the theoretical treatment of turbulent flows so difficult.

Turbulent boundary-layer equations are derived from the Reynolds equations in the

same way as laminar boundary-layer equations are derived from the Navier-Stokes equations,

i.e., by the process of eliminating terms of negligible magnitude.

In the case of axisymmetric flow past a body of revolution with negligible longitudinal

curvature, the Reynolds equations of motion become*

*The Reynolds equations of motion for general curvilinear coordinates are mitten in tensor notation in Refer.

ence 30
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a. a1  pa. ra L dy a+J - p +""/J

+ L.. a P [ r-'7)J + a?

,a +,. 1 , .., r,,a _ au 1+ . [,L_ 1PL a± [F(- r a,

a a [ j,( _ _
a a a Y a-)r ay

a. a,

and the equations of continuity

+ + a -o (561+~. r- + 0 [571'Y
and~~a th qaiosoyoniut

The unprimed quantities refer to the mean flow and the primed quantities to the fluctuation

flow. The bars over the various products indicate averages in accordance with the Reynolds

concept. Specifically, u, v', q 5, primed or unprimed, represent components of velocity in the

z, y, and S6 directions, respectively. As before, z is the distance along the meridian profile

and y is the distance perpendicular to the profile. 0 is the angle between any meridian plane

and some reference meridian plane.

Eliminating terms of negligible magnitude in 1551 gives the following equations of

motion for the axisymmetric boundary layer on a body of revolutionu"a" + "<- "-- du' 61P ' :>+ ,a r
a. ay pa. Pr --a

0 c, [581

where o. T (5-9" sg

is the negative value of a Reynolds normal stress and

r . #A !. _ P=-'R' [60]

a1
is the total shearing stress.

Integrating the boundary-layer equations, [581, across the boundary layer in the y-

direction from y - 0 to y - 8 and incorporating the equation of continuity, [56], gives the dif.
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ferential form of the momentum equation for axisymmetric turbulent boundary layers on bodies

of revolution

A o+(A+2) ., I = ,. . + d ordy (61]
da U da PU2

0

where the momentum area 0 is defined in Equation (82]. In terms of the displacement area A',
defined in [10] and 0, the shape parameter for axisymmetric flow is

A- [62]
0

The momentum equation, [611, will now be considered for the two cases where the boundary

layer is thin compared to the radius of the body and where the boundary layer is of like

magnitude.

BOUNDARY LAYER THIN RELATIVE TO BODY RADIUS: 8 << P,

In the region forward of the tail, the boundary layer is thin relative to the radius of the

body 8 << P.. Here the momentum equatiorr, [611, may be reduced to a simpler form.

Since within the boundary layer

r,v < r < rw + 8 [631

it follows from [32] that

Fw 0 < a < (P, + 8) 0 [34]

from [101 that

r, 8< A < (r, + 8) 8 [64]

and from [621

H <? [65]

where H is the two-dimensional shape parameter

H [66]

Also a 8 r8 1
d a dy < d a rdy < - 'L (' +dy [

W .f <... +8 (7

0 0 0 -

Evidently for 8 <<r w , Q - rw 9, A* - Pw 8, h-H, and
88

da dz w f
0 0
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Furthermore

0 0

since a udy) LP is empirically of a lower order of magnitude. Hence the momentum
bfc d

equation, [611, becomes for 8 << ra

8
d(r. 0) + (+ 2) P +1 d r o d) [69]
dz U dz Pu2 pU 2 d

0

The sum of terms and d f dy may be considered as an effective

coefficient of local skin friction, i.e.,

7W 2 y f 1701

In their study of two-dimensional boundary layers in adverse pressure gradients, Wieghardt
and Tillmann found that the values of ( -r /p U2)eff computed from the momentum changes of
the mean flow displayed unexpected increases near separation. 31 Since tests by Ludwieg and

Tillmann 32 have shown the values of r.,/ p U2 to decrease in an adverse pressure gradient
faster than those for flat plates without pressure gradients, the explanation of the increase in
(rW/p U 2 )eff has to be sought elsewhere. Wieghardt has attributed this apparent increase
wholly to the convergence of the flow caused by the thickening of the boundary layer on the

opposite sides of the wind tunnel. 6 '33 On the other hand, Newman 34 and various investigators

of the National Advisory Committee for Aeronautics 3 5 ,3 6.3 7 have shown this increase to be
partly accounted for by the increase in the value of the normal-stress term 1 d " dy,

pU I:
especially close to separation. Hence for adverse pressure gradients, the decrease in the
value of r, / PU2 tends to be compensated by the increase in the value of

1- d a dy. This makes the coefficient of local skin friction for flat plates without

pressure gradient ( 7'w / P U2 ) 0 a close approximation to the effective skin friction, at least

for moderate pressure gradients. Lyon's experimental results tend to substantiate this.27

Therefore with

Eqain[9 eo[71
0 Off

Equation [69] becomes
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d(rw 0) + (H + 2) ?w -dU 772
d U dz w U2 [721

0

The coefficient of local skin friction for flat plates ( w / P U2 ) 0 decreases slowly
with local Reynolds number R. A suitable formula valid for a large range of Reynolds num-
bers is that derived in Reference 38 from the Kirman-Schoenherr formula for the total dr,, of
flat plates,

r., ) 0.01466 34] [731
0 logl 0 (2 Re) logo10 (2 Re) + 0.

which is plotted in Figure 6.

* :+ +':iV 4+ '-''-+--4-4-±4 --- 9-- -4,--,+,-, 4-4+ +-,+---
4 . ,4 .4-4-4. ,. *+6t 4 .* '+

4, 1 . .

4r - , • - + _ _ ( \ " '.. . ' . . . ..0.01466
U. UT 109 10 (2R@) I+ Iog(2%) + 0.4343]

S0.006361 
3.= 2 - -$-- - R lgg (Least -SqursFt 0RIO

- T, ,1 T ... .

UZ 4 4 * .. , , ,.4 + + .

4 +

... . I f t ~4 + ; -f t t.. .. + . . - t +.. .

- 4- -ti '

164L .I.

.5 2 3 4 5 6 o ,9$ 5 2 3 4 5 6 2 3 2 4 s .
Re Boundary-Layer Reynoids Number

Figure 6 - Local Skin Friction for Flat Plates as Function of Boundary-Layer
Reynolds Number R0

A rapid procedure (and one sufficiently accurate for drag calculations) is to
approximate ( , / P U2 )0 with a power law and to assume H constant. With

T 2 4D[741
'PU )- .
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where n and C0 are constants, [72] becomes

d(rw ) (H +2) dU (,,1+" ' )+. - d (,.e) . io ,Ge)" (75]
dx U dU

which is a first-order differential equation in rw e of the Bernoulli type. For H constant, [75]
gives for interval of integration zI to X2

1 +M l+M +CP f X
2 

f ,/ J-X d

(/W ('0) + (1+.) V1 P a) IW (76]
X
1

where
j. (1 + n) (H + 2) [771

Lyon found that H - 1.4 gave good agreement between the experimental and calculated
drags. 27 Since (7, / pU 2 )0 in Equation [78] gives almost a straight line on a log-log plot
as shown in Figure 6, a power law approximation proves a close fit. For 103 < Re < 10 6, a
least-squares fit of [731 gives

a - 0. 1686
(781

Co 0. 006361

A more convenient nondimensional form of [76] is
) (/L)+

1+ M1C0 i seca 41

2 L 2 f L I791

BOUNDARY LAYER NEAR THE TAIL

It is apparent that the previous assumption 8 << ro is no longer valid towards the after
end of the body where the radius tw goes to zero at the tail and the boundary layer progres.
sively thickens. Consequently the general form of the momentum equation [61] has to be em-

ployed; for constant A, it may be integrated to the form

+ J 4 (. w + _L g .d)UA+2 d9U uA + 2 f P u2 Pu2  [8o
us P 8 [80]

where the subscript g refers to the initial point of integration and the subscript e to the tail

of the body. 87 1 d 8
Experimental evidence 27 indicates that r1, + _ T_ f rdy in the right.

hand side of Equation [80] is substantially linear with respect to a along the after end, and

drops to zero at the tall. Consequently
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1.. G~d-(t(z.~ ~ [811
-5 -4 o8 " a dY - P e- 9

rP v2 -P a )

Ftirtwoimo, the variation of V with respecA to a is also substantially linear along the after

U 6U. [82]

IniortinR thet*, linear relations, Equations [811 and [821, into momentum equation 1801 gives

AU + 2 W Y*''o (-a 6)
4 \r. ' (h + 3) (h + 4) U h+2 (U,- U,) 2

1831

E (A+ 3) U 9h+ 4 _-(A + 4) U. U £+ + Ujh+4]

of noadimensionally

-0 /V/U-) + 2 A 11-6 1 Seca

+A (I'm,)i 7 !A +2 ( U U 2[ C'

I.d A. - 1.42 found on the Mark 13 Torpedo.[

Iti ohtt roglion of the boundary layer near the tail, it is useful to establish relations be-

Sj d if, 80 and A*, and A and H. A power law is assumed for the velocity profile or

I -[851

,,i .ig this. xpression into Equation [321 and performing the indicated integration
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r0 0 +f '( )4 ocoO (86]n -r,,, e - 1) (H + -) r'

Also from Equation [10]

tr i L2 -Ti1) (Hgs) +L?]

Furthermore,

(r (H 1 (0 c aJ- 1A" -H4 L2(H---)(i + ,)- {o , (881
+{ H 2 (H + 1) to (Cos a

L( - 1) (H + 8) j I--7 r

In the wake where r. - 0

A - Ill I (891
2

TURBULENT WAKE

The boundary layer leaving the tail of the body as the wake has a somewhat higher
pressure and larger momentum area Ve than the wake far downstream. Since the momentum

area 0.. of Lhe wake far downstream determines the drag of the body, a relation is required

between G. and the momentum area Ie of the boundary layer at the tail.

With no skin friction in the wake and with negligible effect from the normal-stress term
the momentum equation [61] reduces to

di+ (A+2) a _UE -0 [901

Wz U dz

Integrating by parts over the length of the wake from the tail to infinity downstream yields

S= t h.U)-a9 2exp In dA] [911

where the limiting value of A at infinity is unity.

The evaluation of exp [hedA J proceeds empirically. Experimental evidence

suggests an empirical fit of a higher order parabola of form

In U.
.- 1[ [92]

In U.
U,
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1.0
0 Mark 13 Torpedo, Ref.(39) /

Power Lowlog (U./ U) h-,/,og(u../u) / "h- I /
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/
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-w 0.4 //
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Figure 7 -Variation of Axisymmetric Shape Parameter A in Wake

Then

In dA (n. [931

and 1-he

exp In d ] .- [94

Finally (h e +2) q+3

0f. = 1 UL) [951

This completes the relationships required for calculating the drag from the boundary-layer

development. It is seen that both the momentum area and the shape parameter at the tail are

required for a precise solution of the drag.

The choice of a value for q is not critical since a large difference in q results in only

a small error in the drag. Considering only a very limited amount of two-dimensional data,

Young 2 uses a linear relation for Equation (921, that is, a value of q of unity. As shown in

Figdre 7, test data for a body of revolution, the Mark 18 Torpedo, 3 9 though meager, indicate
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that the ordinate In U./ approaches the limit of zero at the origin more gradually than by
In U. / ua

a linear relationship. Until additional test data are available, it is suggested that a value of

q - 7 be used for drag calculations. If the value of A, - 1.42 (from the data for the Mark 13

torpedo) is also used in Equation [95], there results finally

[I=. U.. ) 3 "3 8  [96]- U.l

CONCLUDING REMARKS

The method described in this report gives a relatively simple procedure for computing

the viscous drag of a body of revolution to an engineering degree of accuracy. Any marked

deviation between the calculated and measured values of drag should be expected only in the

case of a shape differing radically from the usual streamlined figure.

To test the method of this report, drag coefficients of the model of the airship AKRON

were computed at various Reynolds numbers for comparison with measured values. 40,41

Measured values of the pressure distribution and measured locations of the transition point

were used in the calculations. The computed values were found to lie between the measured

values as shown in the accompanying table.

TABLE 2

Comparison of Measured and Computed Values of Drag Coefficient of
1/40-Scale Model of Airship AKRON

Drag Coefficient CD
ieyn01ds Experimental

Number Wooden Metal oreputed
RL Model Model

12.3 x 106 0.0198 0.0228 0.0222
15.0 x 106 0.0193 0.0223 0.0216
17.3 x 106 0.0190 0.0219 0.0211

In conclusion, it is noted that in the case of low Reynolds numbers the viscous drag of

bodies of revolution depends to a large measure on the position of transition, and that in the

case of high Reynolds numbers, it depends on the detailed development of the turbulent bound-

ary layer in pressure gradients. The current theories on turbulent flow are semi-empirical in

nature. Accordingly, Before all the processes determining viscous drag are fully elucidated,

there is need for accurate measurements of such factors as velocity profiles and shearing-

stress profiles in turbulent boundary layers especially at high Reynolds numbers.
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For convenient reference, the various steps involved in calculating the viscous drag are
summarized in Appendix 1.
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APPENDIX 1

CALCULATION PROCEDURE

For convenient reference, the various steps for computing the viscous drag of bodies

of revolution in axisymmetric flow are listed here.

1. Prescribed Data

a. Profile dimensions

b. Pressure distibution

1 pV2 "f.e

T-

c. Body Reynolds number

RL = ._L [38]

2. Transition Point

a. Neutral stability point(1.)

(1) R0 = is computed from

R 2 ja/ 27 ~-)sec a d~j~ i
'(d ( ' ) ) " (') 11,

(2) .Q.-exite transiis computed from
,dz \L

R 2 d(UL
02 ~ ~ d(7 V Cs)
Tid 1? J1/U \ (.I 52]

(a) H0  2 d( V.) is plotted to intersect the neutral stability curve of Figure 8

to give ()N

b. Self-excited transition point()
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(1) iu computed for various asumed values of) from

(2) Transtio Ron fo L.ree-str Uea to ieren c creofFgue4togv

(1) For prescribed u~'----'f free stream (R6 ab - ReN) ° is determined from

U-

Figure 5.

(2) Rab is determined from

Rib - R.N - ,R - [541
d o, RL- ON .,- Ra.N [

3. Laminar Boundary LayerI-) t opoint() is computeL from
fl) Transition t 

L .s ec

or if R R-e.a been computed

"3.( La.-,a
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4. Turbulent Boundary Layer

a. Thin boundary layer, 8 << r,

_p . w in computed over distance VI) to() 0.8 from
L 2  L 2  

F

r(I.

( ) (P9)+6 "(.)'., ,
[791

+ () seca d
RLn  OC/L ) +)Of

where m - 0.1686

j - 3.9732

40 - 0.006361

b. Boundary layer near tail

(1)( ) is computed from

2~ 0 2)

(sec a

+ (A+k 7 AV2)(jA) 2(U U) 2 41

Iva

(2) A value of h 1.4 and) 0.8 is to be used.
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5. Wake

0. is computed from

! -

[.8 961

6. Viscous Drag

Drag coefficient CD is computed from

C -lw [71
A
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